If You Build It, Will They Come?
Developer Recruitment for Security Studies

Nikhil Patnaik, Joseph Hallett, Mohammad Tahaei, Awais Rashid

firstname.lastname @bristol.ac.uk
University of Bristol, UK

ABSTRACT

Recruiting participants for security-focused developer studies is
a challenge. We discuss why recruiting for security studies is so
challenging, why finding suitable developers is hard, and why the
issues faced vary for different research groups. We conclude by
suggesting the need for developer test-beds, for all to access, to
facilitate the mass study of developers and their security practices.

ACM Reference Format:

Nikhil Patnaik, Joseph Hallett, Mohammad Tahaei, Awais Rashid. 2022. If
You Build It, Will They Come? Developer Recruitment for Security Studies.
In Proceedings of 1st International Workshop on Recruiting Participants for Em-
pirical Software Engineering - The 44th International Conference on Software
Engineering (ROPES - ICSE 2022). ACM, New York, NY, USA, 2 pages.

1 INTRODUCTION

To help developers write more secure code, security researchers
study how developers engage with the existing security tools and
cryptographic APIs available. That said recruiting developers for
such studies presents a set of challenges on its own. We reflect on
the recruitment challenges of 5 security-focused studies over the
last 7 years. We propose a developer test-bed based on the lessons
learned from the recruitment challenges discussed.

2 WHAT’S SO SPECIAL ABOUT SECURITY?

Security studies require participants to not only have experience
with programming but also general security know-how [1, 3, 4].
However, developers are rarely both skilled programmers and ex-
perienced with implementing security. Recruitment becomes even
more challenging when considering the developers’ expertise. Re-
cruiting from a spectrum of experienced, intermediate, and novice
developers allows for an in-depth, unskewed analysis, which re-
duces threats to validity and may present more interesting findings.

Hallett et al. recruited 138 developers from Prolific to study
whether the act of writing a specification for a piece of security sen-
sitive code lead to developers writing more secure code. Not only
did most developers fail to store a password safely, but despite devel-
opers claiming expertise (and the study platform claiming to recruit
developers with expertise) there was also no statistical difference
between developers who claimed security expertise and those who
had no experience [3]. Acar et al. observed 256 Python developers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ROPES - ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

tasked with performing common cryptographic processes using
5 Python cryptographic APIs [1]. They examined the developers’
code for functional correctness and security, and compared the
results to the claims of usability made by the cryptographic APIs.
Nadi et al. performed 2 surveys with a total of 48 developers to un-
derstand the cryptographic tasks they perform and the challenges
they face [4]. Nadi et al. recruited developers, not based on their
programming competence, but rather the questions they asked on
Stack Overflow regarding Java-based cryptographic APIs. Wu et al.
ran 19 semi-structured phone interviews with participants, using a
combination of standard interview techniques and a diagramming
exercise. Wu et al. identified 4 mental models ultimately derived
from an abstraction of restrictive access control and symmetric
encryption [7].

In an ongoing study, we elicited developers’ mental models and
ran a code comprehension exercise where developers attempted
to explain different implementations of Public Key Cryptography
written using different C-based cryptographic APIs. The developers
required experience with C programming along with some crypto-
graphic expertise. The study group was comprised of professional
programmers and cryptography students. Both Wu et al. [7] and
our ongoing study recruited a far lower number of participants
compared to the other 3 studies [1, 3, 4]. Recruiting 20 participants
required multiple recruitment sources. We also found that each in-
terview was taking around 2 hours to complete. Developers cannot
usually provide more than 1 hour of their time, so the interviews
did not allow room for long engaging discussions, but instead were
rather short intense discussions because the purpose of the study
was to elicit the mental model of the developer.

Takeaway: To ensure a range of expertise with ample time to
explore developers’ ideas is really hard when recruiting.

3 RECRUITMENT POOLS & AVENUES

If a researcher wants to run a study with developers they first
need to recruit people who know how to code. This can be more
challenging than one might hope. When recruiting participants
for our studies through Prolific, we tried specifying knowledge of
programming as an inclusion criteria [3, 5]. Despite this we found
that many of our participants had never programmed before and so
were rejected after starting (or completing) the study. Others had
questionable programming knowledge (despite claiming the skill).
We found that although we recruited developers based on their fa-
miliarity with programming from Prolific, the sample may give an
inaccurate representation of how developers as a whole behave, a
threat to the ecological validity. This may be because the developers
that apply to work through Prolific are of a freelance, independent



ROPES - ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

nature. Along with the ecological validity, this issue also effects
the demographic of study groups recruited through Prolific. When
using the same survey tool with no exclusion criteria, Wu et al.
found that roughly a third of the participants they recruited were
students and only a third of them had full time jobs [7]. Although
Wu et al. did not actively seek to filter by socioeconomic demo-
graphics, the unclear experience of the participants threatens the
validity of the study. Acar et al. recruited Python developers by
sampling Python contributors from popular GitHub repositories,
maintaining ecological validity [1].

Our ongoing study on mental models was advertised to lectur-
ers who shared it through the university student boards. We also
reached out to other universities who taught C and Cryptography
in their syllabus. We shared our advertisement through LinkedIn
with C programming and cryptography groups, and chat rooms:
another avenue for recruitment. We also utilised connections with
industry to recruit suitable software developers. We performed
snowball sampling by asking participants if they could pass on the
advertisement to others who may be interested in the study [2, 4].
Despite trying through all these different methods, and offering a
reasonable financial incentive, we could only recruit 20 participants.

Takeaway: Ensuring participants represent software devel-
opers as a whole is really hard no matter the incentives or
sources—platform tools pose threats to ecological validity!

4 ETHICAL & INSTITUTIONAL CONCERNS

Several studies have taken the approach of directly contacting de-
velopers by scraping email addresses from Stack Overflow and
Github commits [1, 4, 6]. Whilst these approaches can potentially
offer a large number of participants to recruit (over 50,000 invites
were sent in one study with a completion rate of 0.5% [1]), our own
experience of these approaches is that many developers find unso-
licited emailing unwelcome (even though we use GDPR compliant
services to send such invitations) [6] and regard it as spam email,
and that the overall response rate is low. Whilst using users’ emails
for recruitment is prohibited by platforms, it is possible to collect
user emails independently, and so we should consider the ethics of
this method. Mass-scraping requires abusing web technologies to
retrieve data unavailable through APIs. If a significant number of
the people we are trying to recruit find our recruitment methods
invasive perhaps we should rethink our strategies.

If we are not going to recruit developers from mailing lists, per-
haps we can recruit through our own universities: after all we train
the next generation of developers, can we not study them too? Our
experience of this process is that the ability to do so varies greatly
at different institutions. In some universities running experiments
with students is normal and there are clear and easily available
channels to do so. Other universities prevent any researcher with
teaching commitments from running studies with department stu-
dents to ensure that students’ grades cannot be influenced by any
research studies in which they may optionally take part on. Whilst
some universities have mailing lists and channels that can be used
to contact and recruit students en masse, these mechanisms are not
universal and researchers must rely on student societies and the
good will of administrators to varying degrees of success.

Nikhil Patnaik, Joseph Hallett, Mohammad Tahaei, Awais Rashid

Takeaway: When devising recruitment strategies, we need
to consider the challenges of unsolicited approaches, differing
institutional practices, and platform constraints.

5 CONCLUSION

Security-focused studies aim to identify and address issues faced by
developers, but are effected by the recruitment challenges we have
discussed. Each of these studies independently recruited developers
for their studies, resulting in repeated effort and possible partici-
pation fatigue for developers. Although the existing recruitment
platforms available provide participants, there is a notable limita-
tion regarding the validity of the findings. We need collaboration
across research groups to achieve this because current approaches
are not scalable across individual universities and we need more
developers than any one research group can reach.

We propose a developer test-bed—accessible to all—that works as
a dedicated medium between developers and security researchers.
The developer test-bed is a pool of developers who join based on
incentive programs, like payment contributions to open source
projects in which they are involved on. Researchers can use the
test-bed to find suitable participants with suitable skills and host
their studies in the form of hackathons and user studies, which
can engage groups of developers en masse. Instead of individual re-
searchers trying to get developers to come and take part in studies;
we can as a research community build developer test-beds to study
how programmers work securely in practice. The developers define
their skills and experience, which researchers can filter through
to recruit suitable participants. To address ethical challenges, re-
searchers and participants will interact through a portal system,
instead of spam emails being sent directly using personal email. If
we can build a test-bed to study developers then instead of worrying
about recruitment issues, researchers will come to study developers,
because current recruitment strategies are unsustainable.

ACKNOWLEDGMENTS

This research is supported in part by EPSRC Grant EP/P011799/2
and the National Cyber Security Centre.

REFERENCES

[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,
Michelle L Mazurek, and Christian Stransky. 2017. Comparing the usability of
cryptographic APIs. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE.

[2] Leo A Goodman. 1961. Snowball sampling. The annals of mathematical statistics
(1961).

[3] Joseph Hallett, Nikhil Patnaik, Benjamin Shreeve, and Awais Rashid. 2021. “Do
this! Do that!, And nothing will happen” Do specifications lead to securely stored
passwords?. In ICSE. IEEE.

[4] Sarah Nadi, Stefan Kriiger, Mira Mezini, and Eric Bodden. 2016. Jumping through
hoops: Why do Java developers struggle with cryptography APIs?. In Proceedings
of the 38th International Conference on Software Engineering.

[5] Mohammad Tahaei, Kopo M. Ramokapane, Tianshi Li, Jason I. Hong, and Awais
Rashid. 2022. Charting App Developers’ Journey Through Privacy Regulation
Features in Ad Networks. In Proceedings on Privacy Enhancing Technologies. 1-24.

[6] Dirk Van Der Linden, Pauline Anthonysamy, Bashar Nuseibeh, Thein Than Tun,
Marian Petre, Mark Levine, John Towse, and Awais Rashid. 2020. Schrédinger’s
security: opening the box on app developers’ security rationale. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE, 149-160.

[7] Justin Wu and Daniel Zappala. 2018. When is a tree really a truck? Exploring
mental models of encryption. In Fourteenth Symposium on Usable Privacy and
Security (SOUPS 2018).



	Abstract
	1 Introduction
	2 What's so special about security?
	3 Recruitment Pools & Avenues
	4 Ethical & Institutional Concerns
	5 Conclusion
	Acknowledgments
	References

