Lessons Learned in Five Years of Conducting Security Studies
With Software Developers

Alena Naiakshina
Ruhr University Bochum
alena.naiakshina@rub.de

ABSTRACT

End-user-based research was conducted for over 20 years aiming
at supporting end-users with software security issues. Thus ample
knowledge exists on how to conduct security studies with end-
users. However, critical security incidents in the last decade showed
that, like end-users, software developers are usually not security
experts and need support with security-critical tasks as well. While
this motivated researchers to conduct more security studies with
software developers, it also highlighted a lack of methodological
knowledge considering security studies with software developers.
We derived six recommendations concerning security developer
studies’ ecological validity and recruitment challenges based on our
lessons learned from the last five years of research with software
developers.

ACM Reference Format:

Alena Naiakshina, Anastasia Danilova, and Matthew Smith. 2022. Lessons
Learned in Five Years of Conducting Security Studies With Software De-
velopers. In International Workshop on Recruiting Participants for Empirical
Software Engineering (RoPES °22), May 17, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 3 pages.

1 INTRODUCTION

Ecological validity issues constitute a significant concern of usable
security studies with software developers [5]. It is unclear how
knowing they participate in a study or being explicitly instructed
to consider security aspects in a task description affects software
developers’ security behavior. Like end-users, developers might con-
sider security a secondary task and thus might behave differently in
real-world circumstances [5, 16]. Further, it is challenging to recruit
enough professionals to obtain a significant amount of relevant
study data due to time, spread out geographical locations, and finan-
cial constraints [4-6, 19, 27, 31]. A common approach in software
engineering studies is the recruitment of convenience samples, such
as computer science (CS) students (e.g., [4, 17, 20, 25, 26, 29]). While
recent work indicates that CS students can be acceptable proxies
for professionals in research studies [4, 6, 18, 31], there are still
some caveats [31]. To widen the recruitment pool and include non-
student participants, it is common for researchers to resort to online
studies and recruit participants online (e.g., [6-8, 15, 21, 22, 30, 32]).
Diverse recruitment strategies have been used, such as cold-calling
programmers on platforms such as Stack Overflow, GitHub, Meet-
up groups, etc. or posting open invitations on social media, in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

RoPES °22, May 17, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).

Anastasia Danilova
University of Bonn
danilova@cs.uni-bonn.de

Matthew Smith
University of Bonn, Fraunhofer FKIE
smith@cs.uni-bonn.de

forums, newsletters, and events, with the expectation being that
participants without programming knowledge will not sign up for
the studies [7, 9, 28]. However, since researchers often offer sig-
nificantly higher compensation than for end-user studies [22-24],
there can be an incentive for participants to take part in studies
despite having no programming skill. We conducted lab, online, and
field studies with students, freelancers, and company developers
investigating their security behavior and different study design
variables. In the following, we contribute our lessons learned from
the last five years of research with software developers.

2 RESEARCH IMPLICATIONS
2.1 Security deception

To investigate software developers’ security behavior with user-
password storage, we conducted a qualitative study with 20 CS
students in a laboratory setting [23]. Participants were asked to de-
velop a user registration function for a university social networking
platform. To examine whether software developers think about se-
curity on their own, half the participants were explicitly prompted
to store user passwords securely, while the other half were told
that the study was about API usability (non-prompted). The study
also investigated whether an application programming interface
(API) offering built-in functionalities for secure password storage
would help developers produce more secure code than an API re-
quiring developers to choose secure password storage mechanisms
manually. Based on their popularity, Spring [2] and JavaServer
Faces (JSF) [1] were selected as frameworks for the study. Spring
was chosen to represent a more supportive framework with inbuilt
functionalities for secure password storage. In contrast, with JSF,
developers had to implement secure password storage on their own.
None of the participants stored user passwords securely without
being prompted in this study. If researchers are testing the usability
of security APIs but do not instruct participants to think about se-
curity, participants might not use the security features. Our results
indicated that security deception might simulate a more realistic
environment, as employers or end clients without a background
in technology or security rarely ask for secure implementation
but rather for software functionality. Researchers might consider
including functionality requirements in security tasks to increase
the ecological validity of security studies with developers.

Security deception might increase the ecological validity of
security studies with developers.

2.2 Qualitative vs. quantitative studies

To further explore methodological requirements, the previous stu-
dent study was extended to include an additional 20 CS students,

RoPES °22, May 17, 2022, Pittsburgh, PA, USA

and quantitative analysis was performed [24]. The findings of the
qualitative study with students described in Section 2.1, provided al-
ready good indications for the results of this follow-up quantitative
study. We concluded that qualitative studies might offer valuable
insights without recruiting many professionals.

Researchers might choose a qualitative approach rather than
a quantitative one if sample sizes are expected to be small.

2.3 Study deception

Since participants from the previous student studies reported that
they might store user-passwords securely in a real company, we
conducted a follow-up study with freelancers. In the hope of in-
creasing the ecological validity, we used a deception study design
wherein freelance developers were hired on Freelancer.com for a
regular job using a company front created for the study, instead of
openly telling them that they were taking part in a study [22]. Af-
ter completing the programming task, participants were informed
about the research context. In this study, participants’ behavior was
similar to that of CS students concerning secure password storage
practices. While deception in this study was used to ensure that
the results would reflect the real work of online freelancers, it can
entail additional study design work and negotiations with ethical
oversight bodies. Therefore, we replicated the study but announced
and ran it as a study on Freelancer.com [11]. Our findings suggested
that study deception did not significantly affect this password stor-
age study, and the open recruitment without deception was a viable
recruitment method. While the results certainly do not generalize to
all developer security studies, it is an essential first indication that
freelance developers recruited as part of a study behave similarly
to when they are hired for a regular job. We found Freelancer.com
to be a suitable source for recruiting enough willing professional
developers to work on (study) projects.

Researchers might get ecologically valid results in software
developer studies without using study deception.

2.4 Sample comparison

To investigate whether professional developers employed by com-
panies behave the same as CS students and freelance developers,
an additional online study was conducted with professional devel-
opers from different companies [21]. However, it was not realistic
to hire professionals from companies for a small task without re-
vealing the research context of the study. Therefore, participants
were informed that the programming task was requested for re-
search purposes. In this study, professional developers employed
in companies chose higher security implementations for password
storage than CS students or freelancers. However, similar to CS
students and freelancers their security behavior varied when they
were not prompted for security. In addition, like the students, profes-
sional developers working in companies made rather better security
choices with Spring than JSF. In summary, it was demonstrated
that the findings regarding relative behavior applied to all devel-
oper samples. Since the usable security and privacy community is
concerned with increasing secure development rather than with

Alena Naiakshina, Anastasia Danilova, and Matthew Smith

which samples perform better, these are promising results for the
ecological validity of developer studies conducted with CS students.

Researchers might recruit CS students when they want to
investigate security behavior in relative terms.

2.5 Programming vs. code reviewing

The previous programming studies were time consuming and the
sample size was not as large as we would have wished. Therefore,
researchers often tend to design programming tasks in such a way
that software developers only need to solve small and short tasks
(e.g., [3, 4, 6]). To provide deeper insights into this research field,
we tested code reviewing as a promising methodology for security
studies with developers. Instead of asking developers to program a
piece of code, we showed them functional code snippets and asked
them to write code reviews about the snippets. We conducted an
online code reviewing study with 44 freelance developers show-
ing each of them an insecure password storage code snippet [13].
Participants needed less time to complete the code review study
compared to the programming studies in [11, 21-24] and we still
found similar results concerning security awareness and security
prompting. While we do not argue to replace programming tasks
with code-reviewing tasks in security developer studies, funding is
often limited within academia, and smaller tasks yielding similar
effects could enable more future research with developers.

Researchers might consider using code reviews as methodol-
ogy for security developer studies.

2.6 Screener questions

In previous online studies with programmers, researchers often re-
lied on participants’ claims to have programming skills or used pro-
gramming tasks or knowledge questions to verify these [7, 14, 28].
However, our work showed that designing programming screener
questions is not trivial, and we would not recommend using ques-
tions without testing them before. We surveyed a total of 249 people
to find questions that can be used to filter participants with pro-
gramming skills. We designed 16 questions and tested them with
programmers, non-programmers and under adversarial conditions.
We recommend six screener questions for use in online studies
based on our evaluation (see [12]). Since the most reliable screeners
were also those that took the most time, we extended the pool of
screeners and made recommendations on improving the process
and introduced time limits allowing us to create more efficient (i.e.,
quicker but still reliable) screeners (see [10]). Future researchers
can use our questions to improve their data quality by screening
out participants without any programming skill.

Researchers might use screener questions to ensure partici-
pants have programming skills in online studies.

ACKNOWLEDGMENTS

This work was partially funded by the ERC Grant 678341: Frontiers
of Usable Security.

Lessons Learned in Five Years of Conducting Security Studies With Software Developers

REFERENCES

(1]

[2

—

[3

[4

flaa

=
22

[10

(11

[12

[13]

[14]

[15]

[16]

[17

[18]

[19]

[20

[n.d.]. JavaServer Faces (JSF). Website. — Online: https://javaee.github.io/
javaserverfaces-spec/; last accessed January 21, 2022.

[n.d.]. Spring. Website. Online: https://spring.io/projects/spring-framework;
last accessed January 21, 2022.

Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,
Michelle L Mazurek, and Christian Stransky. 2017. Comparing the Usability of
Cryptographic APIs. In 2017 IEEE Symposium on Security and Privacy (SP’17).
IEEE, 154-171. https://doi.org/10.1109/SP.2017.52

Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. 2016. You
Get Where You're Looking for: The Impact of Information Sources on Code
Security. In 2016 IEEE Symposium on Security and Privacy (SP’16). 289-305. https:
//doi.org/10.1109/SP.2016.25

Yasemin Acar, Sascha Fahl, and Michelle L Mazurek. 2016. You are not your
developer, either: A research agenda for usable security and privacy research
beyond end users. In 2016 IEEE Cybersecurity Development (SecDev). IEEE, 3-8.
Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L Mazurek, and
Sascha Fahl. 2017. Security Developer Studies with GitHub Users: Exploring a
Convenience Sample. In Thirteenth Symposium on Usable Privacy and Security
(SOUPS’17). 81-95.

Hala Assal and Sonia Chiasson. 2019. ’Think Secure from the Beginning’: A
Survey with Software Developers. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI'19). ACM, New
York, NY, USA, Article 289, 13 pages. https://doi.org/10.1145/3290605.3300519
Jason Bau, Frank Wang, Elie Bursztein, Patrick Mutchler, and John C Mitchell.
2012. Vulnerability Factors in New Web Applications: Audit Tools, Developer
Selection & Languages. Stanford, Tech. Rep (2012).

Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. 2018. On
the Dichotomy of Debugging Behavior Among Programmers. In Proceedings
of the 40th International Conference on Software Engineering (ICSE’18). 572-583.
https://doi.org/10.1145/3180155.3180175

Anastasia Danilova, Stefan Horstmann, Matthew Smith, and Alena Naiakshina.
2022. To appear: Testing Time Limits in Screener Questions for Online Sur-
veys with Programmers. In 2022 IEEE/ACM International Conference on Software
Engineering (ICSE). IEEE.

Anastasia Danilova, Alena Naiakshina, Johanna Deuter, and Matthew Smith. 2020.
Replication: On the Ecological Validity of Online Security Developer Studies:
Exploring Deception in a Password-Storage Study with Freelancers. In Sixteenth
Symposium on Usable Privacy and Security (SOUPS 2020). 165-183.

Anastasia Danilova, Alena Naiakshina, Stefan Horstmann, and Matthew Smith.
2021. Do you really code? Designing and Evaluating Screening Questions for On-
line Surveys with Programmers. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 537-548.

Anastasia Danilova, Alena Naiakshina, Anna Rasgauski, and Matthew Smith. 2021.
Code Reviewing as Methodology for Online Security Studies with Developers-A
Case Study with Freelancers on Password Storage. In Seventeenth Symposium on
Usable Privacy and Security (SOUPS 2021). 397-416.

Anastasia Danilova, Alena Naiakshina, and Matthew Smith. 2020. One Size
Does Not Fit All: A Grounded Theory and Online Survey Study of Developer
Preferences for Security Warning Types. In Proceedings of the 42nd International
Conference on Software Engineering (ICSE’20). https://doi.org/10.1145/3377811.
3380387

Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stransky, Sebas-
tian Méller, Yasemin Acar, and Sascha Fahl. 2018. Developers Deserve Security
Warnings, Too: On the Effect of Integrated Security Advice on Cryptographic
API Misuse. In Fourteenth Symposium on Usable Privacy and Security (SOUPS’18).
265-281.

Matthew Green and Matthew Smith. 2016. Developers are Not the Enemy!: The
Need for Usable Security APIs. IEEE Security & Privacy 14, 5 (2016), 40-46.
Martin Host, Bjorn Regnell, and Claes Wohlin. 2000. Using Students as Subjects-
A Comparative Study of Students and Professionals in Lead-Time Impact Assess-
ment. Empirical Software Engineering 5, 3 (2000), 201-214.

Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar Weippl.
2017. "THave No Idea What I'm Doing" - On the Usability of Deploying HTTPS. In
26th USENIX Security Symposium (USENIX Security 17). USENIX Association, Van-
couver, BC, 1339-1356. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/krombholz

Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar Weippl.
2017. "THave No Idea What I'm Doing" - On the Usability of Deploying HTTPS. In
26th USENIX Security Symposium (USENIX Security 17). USENIX Association, Van-
couver, BC, 1339-1356. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/krombholz

Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental
Models: A Study of Developer Work Habits. In Proceedings of the 28th International
Conference on Software Engineering (Shanghai, China) (ICSE '06). ACM, New York,
NY, USA, 492-501. https://doi.org/10.1145/1134285.1134355

[21

[22

[24

[25

[26

[27

[28

[30

[31

[32

RoPES °22, May 17, 2022, Pittsburgh, PA, USA

Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and Matthew Smith. 2020. On
Conducting Security Developer Studies with CS Students: Examining a Password-
Storage Study with CS Students, Freelancers, and Company Developers. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI °20). Association for Computing Machinery, New York,
NY, USA, 1-13. https://doi.org/10.1145/3313831.3376791

Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von Zezschwitz,
and Matthew Smith. 2019. ‘If You Want, I Can Store the Encrypted Password’: A
Password-Storage Field Study with Freelance Developers. In Proceedings of the
2019 Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI'19). ACM, New York, NY, USA, Article 140, 12 pages. https://doi.org/10.
1145/3290605.3300370

Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej
Dechand, and Matthew Smith. 2017. Why Do Developers Get Password Stor-
age Wrong?: A Qualitative Usability Study. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (Dallas, Texas,
USA) (CCS’17). ACM, New York, NY, USA, 311-328. https://doi.org/10.1145/
3133956.3134082

Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, and Matthew Smith.
2018. Deception Task Design in Developer Password Studies: Exploring
a Student Sample. In Fourteenth Symposium on Usable Privacy and Security
(SOUPS’18). USENIX Association, Baltimore, MD, 297-313. https://www.usenix.
org/conference/soups2018/presentation/naiakshina

Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles
Weir, and Sascha Fahl. 2017. A Stitch in Time: Supporting Android Developers
in WritingSecure Code. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (Dallas, Texas, USA) (CCS ’17). ACM,
New York, NY, USA, 1065-1077. https://doi.org/10.1145/3133956.3133977
Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. 2015. Are students repre-
sentatives of professionals in software engineering experiments?. In Proceedings
of the 37th International Conference on Software Engineering-Volume 1. IEEE Press,
IEEE, Florence, Italy, 666-676.

Dag IK Sjoberg, Bente Anda, Erik Arisholm, Tore Dyba, Magne Jorgensen, Amela
Karahasanovic, Espen Frimann Koren, and Marek Vokac. 2002. Conducting Realis-
tic Experiments in Software Engineering. In Proceedings international symposium
on empirical software engineering. IEEE, IEEE Press, Piscataway, NJ, USA, 17-26.
Davide Spadini, Giil Calikli, and Alberto Bacchelli. 2020. Primers or Reminders?
The Effects of Existing Review Comments on Code Review. In Proceedings of
the 42nd International Conference on Software Engineering (ICSE’20). https:
//doi.org/10.1145/3377811.3380385

Mikael Svahnberg, Aybiike Aurum, and Claes Wohlin. 2008. Using Students
As Subjects - an Empirical Evaluation. In Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement
(Kaiserslautern, Germany) (ESEM "08). ACM, New York, NY, USA, 288-290. https:
//doi.org/10.1145/1414004.1414055

Chamila Wijayarathna and Nalin A. G. Arachchilage. 2018. Why Johnny Can’t
Store Passwords Securely? A Usability Evaluation of Bouncycastle Password
Hashing. In Proceedings of the 22nd International Conference on Evaluation and
Assessment in Software Engineering 2018 (Christchurch, New Zealand) (EASE’18).
Association for Computing Machinery, New York, NY, USA, 205-210. https:
//doi.org/10.1145/3210459.3210483

Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith.
2016. Helping Johnny to Analyze Malware: A Usability-Optimized Decompiler
and Malware Analysis User Study. In Security and Privacy (SP), 2016 IEEE Sympo-
sium on. IEEE, IEEE, San Jose, CA, USA, 158-177.

Aiko Yamashita and Leon Moonen. 2013. Do Developers Care about Code Smells?
An Exploratory Survey. In 2013 20th Working Conference on Reverse Engineering
(WCRE’13). IEEE, 242-251. https://doi.org/10.1109/WCRE.2013.6671299

https://javaee.github.io/javaserverfaces-spec/
https://javaee.github.io/javaserverfaces-spec/
https://spring.io/projects/spring-framework
https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1145/3290605.3300519
https://doi.org/10.1145/3180155.3180175
https://doi.org/10.1145/3377811.3380387
https://doi.org/10.1145/3377811.3380387
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/krombholz
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/krombholz
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/krombholz
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/krombholz
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/3313831.3376791
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3133956.3134082
https://doi.org/10.1145/3133956.3134082
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://doi.org/10.1145/3133956.3133977
https://doi.org/10.1145/3377811.3380385
https://doi.org/10.1145/3377811.3380385
https://doi.org/10.1145/1414004.1414055
https://doi.org/10.1145/1414004.1414055
https://doi.org/10.1145/3210459.3210483
https://doi.org/10.1145/3210459.3210483
https://doi.org/10.1109/WCRE.2013.6671299

	Abstract
	1 Introduction
	2 Research implications
	2.1 Security deception
	2.2 Qualitative vs. quantitative studies
	2.3 Study deception
	2.4 Sample comparison
	2.5 Programming vs. code reviewing
	2.6 Screener questions

	References

