
Using Games to Broaden Audiences for Programming Studies
Michael Coblenz

University of Maryland
College Park, Maryland, USA

mcoblenz@umd.edu

Felix Sosa
Harvard University

Cambridge, Massachusetts, USA
fsosa@fas.harvard.edu

ABSTRACT
Programming studies typically require participants with signifi-
cant programming expertise. Because these experts are hard to
recruit, programming studies can be challenging to run. Even when
participants are recruited successfully, it is not clear how the re-
sults might relate to fundamental aspects of human cognition that
drive participants’ programming performance. We propose a new
approach: map research questions onto specially-designed games,
which could be played even by participants with limited program-
ming background. This approach may lead to easier recruitment
and more insight into focused questions about cognition.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; • Human-centered computing → HCI theory, concepts
and models; Empirical studies in HCI.

KEYWORDS
empirical studies of programmers, empirical software engineering,
participant recruitment

ACM Reference Format:
Michael Coblenz and Felix Sosa. 2022. Using Games to Broaden Audiences
for Programming Studies. In Proceedings of 1st International Workshop on
Recruiting Participants for Empirical Software Engineering (RoPES ’22). ACM,
New York, NY, USA, 3 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Recruiting participants in studies of programming and software
engineering can be challenging. Incentivizing professional software
engineers with financial compensation is frequently beyond the
budgets of academic labs, and some software engineers cannot
write code for other organizationswithout their companies’ consent.
Recruiting students as participants can be feasible, depending on the
required knowledge and skills, but results in limitations on external
validity. Recruiting participants through online sources such as
Mechanical Turk1 (MTurk) can produce unreliable results [2, 10].

1www.mturk.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RoPES ’22, May/June, 2022, Pittsburgh, PA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Once recruited into a study, programmers frequently spend time
on programming problems that are not of interest to the exper-
imenter [4]. To mitigate this problem, study designers typically
create tasks that minimize opportunities for these challenges both
to reduce study length (and thus make recruitment easier) and to
improve the signal-to-noise ratio for the variables of interest. The
general approach is to conduct a variety of different studies and
combine the results to better understand the relationship between
design choices and programmer behavior.

Typical studies focus on evaluating specific designs. Unfortu-
nately, these studies do not lead to direct insights about human
cognition; due to the task complexity, it is usually impossible to
isolate specific cognitive processes. However, insight about cogni-
tion would be valuable because it could enable researchers to build
generalizable theories, reducing the empirical burden. Inspired by
work in cognitive science and AI that re-casts questions about
real-world learning into questions about learning in video-game do-
mains [8, 11], we propose to re-cast questions about programming
into questions about game-playing. The idea is to design a game
that reflects the key cognitive aspects of a programming task, estab-
lishing a formal mapping that preserves the behaviors of interest
across both domains. We hope to focus the participants’ attention
on a specific aspect of cognition, rather than requiring participants
to do general programming tasks, and expand the participant pool
from those with programming proficiency to anyone who can play
the game. In doing so, we hope to obtain insights about cognition
that could lead to theoretical development.

Reducing the required background for participants in program-
ming studies may make recruiting substantially easier. In addition,
by studying a larger pool, we may understand how individual cog-
nitive abilities and limitations (e.g., limits on working memory
capacity [1]) affect skill; and, by having a diverse group of partic-
ipants, we may learn to what extent the results are generalizable
across a variety of dimensions, such as proficiency and experience.

Two techniques can establish a correspondence between the two
domains. First, we will show an isomorphism between key aspects
of the problems that participants must solve. For example, a prob-
lem involving API calls with specific parameter and return types
might be isomorphic to a particular jigsaw puzzle. The isomorphism
can be made formal by deriving both the programming task and
game task from the same programming language (e.g. the game can
be within a visual programming language with the same semantics
as the language in the programming task). Second, we will develop
interventions that we hypothesize will affect behavior or perfor-
mance, and then evaluate whether the interventions have similar
effects in both contexts. For example, perhaps color-coding tabs
of the puzzle or color-coding the type annotations in the textual
language could help people more easily identify compatible and
incompatible connectors. If color-coding improves performance in

https://orcid.org/0000-0002-9369-4069
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

RoPES ’22, May/June, 2022, Pittsburgh, PA Michael Coblenz and Felix Sosa

both contexts similarly, this can provide evidence that the two tasks
are related. In addition, we plan to also vary the difficulty of both
the game and the programming task to see whether the difficulties
of the two tasks are correlated.

Do results with games generalize to real programming tasks? We
can provide support for a relationship between game designs and
programming studies by, at first, doing both sets of studies. Prior
to any empirical evaluation, if applicable, a formal mapping can
be made between the design of the intervention of interest (e.g., a
programming language construct) and a game mechanic. Provided
the mapping is rigorous, this gives researchers a formal motivation
for designing the study and exploring it empirically.

Task success can depend both on the underlying structure and
on task presentation. A classic example is from Wason et al. [12]:
participants were more accurate at identifying potential violations
of a rule when it was presented in a real-world context than ab-
stractly. Differences in behavior between corresponding contexts
may provide insight as to how to make programmers more effective.

Another challenge is the immediate engineering costs–designing
games can be difficult, and the mapping between the interventions
a researcher might want to investigate and the gamemechanics that
those interventions map to might be difficult to establish. However,
these costs can be mitigated by sticking to the kinds of “toy” games
found in cognitive science, such as old Atari games, where the game
mechanics are kept fairly simple but relevant [7].

When evaluating a correspondence between a game and a pro-
gramming setting, it will be necessary to recruit equivalent par-
ticipants across the two settings. Once the relationship has been
established, however, the game study could be extended with partic-
ipants who would not be prepared to do the programming study in
order to see how the cognitive results might generalize to a broader
population. The goal, however, is that once the principles of estab-
lishing relationships between programming problems and games
are established, one can conduct studies only in the game setting. A
challenge, then is to develop enough theory to show a close enough
relationship between a game design and a programming context
that conducting the programming study as well is unnecessary.

There is a possibility of a different level of engagement across
the two settings, which could be controlled for by providing incen-
tives for rapid completion. There is also a risk that the kinds of
people who are attracted to the game study may be different from
those who are attracted to the programming study. This could be
controlled for with careful recruitment and by controlling for the
demographic differences between groups.

2 EXAMPLES: MAPPING TASKS TO GAMES
Here, we give examples of mapping traditional programming-study
tasks to games.

Studying cognitive load via a cooking game. The theory of work-
ing memory suggests that people have limited capacity storage for
new information [1]. Cognitive load theory [9] predicts that people
learn most effectively if the facts relevant to new information fit in
short-term memory. This may have implications on programming
tasks, which frequently require remembering relevant variables,
functions, type definitions, and other facts [3].

If cognitive load theory is relevant to programmers, an empirical
study could show how performance suffers when cognitive load is
high. A study might ask programmers to do programming tasks
under varying conditions of cognitive load (e.g., by changing the
number of variables that must be used) and observing whether per-
formance degrades when the number of relevant variables exceeds
the participant’s working memory limit.

Consider a game that simulates cooking. The player must com-
bine ingredients together using various cooking processes, such
as mixing or frying. Does performance (in errors made or time
required) degrade when the size of the list of ingredients or pro-
cesses exceeds the player’s working memory limit, or if the pro-
cesses become time dependent (e.g. player has to avoid burning
food)? The study could attract participants more readily than the
corresponding programming study, since it would not require any
programming background. As a result, it would allow researchers to
study impact of cognitive load on performance for a much broader
population. A separate study could look at practicing programmers
and assess whether (a) people with larger working memory capaci-
ties are more effective programmers; or perhaps (b) programming
practice increases one’s working memory capacity, allowing better
performance on non-programming tasks.

Studying parallelization via a factory game. In SpaceChem [13],
players construct factories to synthesize chemicals. These factories
accept reagents and process them along player-designed pipelines
to produce outputs. The pipelines operate in parallel, requiring
users to think about problems of timing and synchronization. Prior
studies of programmers regarding parallelism and concurrency [5]
have been confounded by the specific training given to the partici-
pants. In contrast, games such as SpaceChem can be played with
little training and could serve to provide evidence on the usability
of parallel and concurrent programming constructs.

Abstraction. Some languages provide features that promote ex-
tensive use of polymorphism. For example, Haskell supports higher-
kinded polymorphism, in which type variables can be of any kind
(not only Type). What are the usability costs of such abstraction?
Games, particularly ones that present puzzles, could represent the
key structures of abstraction, and be used to understand the cog-
nitive implications of highly abstract structures. Educators can
use concrete examples to help students understand abstract prin-
ciples [6]; understanding the relationship between the cognitive
implications of abstraction and features that are provided in lan-
guages and libraries may aid in language and library design.

3 CONCLUSION
Recruiting participants in programming studies that produce high-
quality data remains a challenge. However, re-casting problems
in terms of games may broaden the pool of participants, enable
researchers to obtain insights about cognitive processes that are
relevant to programming, and enable more precise control over
the problems the participants face. In doing so, we hope to build
theories of cognition that reduce the need for high-cost empirical
studies in language and tool design.

Using Games to Broaden Audiences for Programming Studies RoPES ’22, May/June, 2022, Pittsburgh, PA

REFERENCES
[1] Alan Baddeley. 1992. Working Memory. Science 255, 5044

(1992), 556–559. https://doi.org/10.1126/science.1736359
arXiv:https://www.science.org/doi/pdf/10.1126/science.1736359

[2] Michael Chmielewski and Sarah Kucker. 2019. An MTurk Crisis? Shifts in Data
Quality and the Impact on Study Results. Social Psychological and Personality
Science 11 (10 2019), 194855061987514. https://doi.org/10.1177/1948550619875149

[3] Michael Coblenz. 2021. Toward a Theory of Programming Language and Rea-
soning Assistant Design: Minimizing Cognitive Load. arXiv:2110.03806 [cs.PL]

[4] Michael Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste
Barnaby, Joshua Sunshine, Jonathan Aldrich, and Brad A. Myers. 2021. PLIERS:
A Process That Integrates User-Centered Methods into Programming Language
Design. ACM TOCHI 28, 4, Article 28 (jul 2021), 53 pages. https://doi.org/10.
1145/3452379

[5] Michael Coblenz, Robert Seacord, Brad Myers, Joshua Sunshine, and Jonathan
Aldrich. 2015. A course-based usability analysis of Cilk Plus and OpenMP. In 2015
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
245–249. https://doi.org/10.1109/VLHCC.2015.7357223

[6] Julie Colhoun, Dedre Gentner, and Jeffrey Loewenstein. 2008. Learning abstract
principles through principle-case comparison. In Proceedings of the 30th Annual
Conference of the cognitive Science Society. Cognitive Science Society, 1659–1664.

[7] Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L Griffiths, and Alexei A
Efros. 2018. Investigating human priors for playing video games. arXiv preprint
arXiv:1802.10217 (2018).

[8] Anna Raffert, Matei Zaharia, and Thomas Griffiths. 2012. Optimally designing
games for cognitive science research. In Proceedings of the Annual Meeting of the
Cognitive Science Society, Vol. 34.

[9] John Sweller and Paul Chandler. 1994. Why some material is difficult to learn.
Cognition and instruction 12, 3 (1994), 185–233.

[10] Mohammad Tahaei and Kami Vaniea. 2022. Recruiting Participants With Pro-
gramming Skills: A Comparison of Four Crowdsourcing Platforms and a CS
Student Mailing List. CHI Conference on Human Factors in Computing Systems
(2022).

[11] Pedro A Tsividis, Joao Loula, Jake Burga, Nathan Foss, Andres Campero, Thomas
Pouncy, Samuel J Gershman, and Joshua B Tenenbaum. 2021. Human-level rein-
forcement learning through theory-based modeling, exploration, and planning.
arXiv preprint arXiv:2107.12544 (2021).

[12] P. C. Wason and Diana Shapiro. 1971. Natural and contrived experi-
ence in a reasoning problem. Quarterly Journal of Experimental Psy-
chology 23, 1 (1971), 63–71. https://doi.org/10.1080/00335557143000068
arXiv:https://doi.org/10.1080/00335557143000068

[13] Zachtronics. 2012. SpaceChem. https://www.zachtronics.com/spacechem/

https://doi.org/10.1126/science.1736359
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1736359
https://doi.org/10.1177/1948550619875149
https://arxiv.org/abs/2110.03806
https://doi.org/10.1145/3452379
https://doi.org/10.1145/3452379
https://doi.org/10.1109/VLHCC.2015.7357223
https://doi.org/10.1080/00335557143000068
https://arxiv.org/abs/https://doi.org/10.1080/00335557143000068
https://www.zachtronics.com/spacechem/

	Abstract
	1 Introduction
	2 Examples: Mapping Tasks To Games
	3 Conclusion
	References

